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Abstract

This report contains an algorithm for decomposing higher-order finite elements
into regions appropriate for isosurfacing and proves the conditions under which the
algorithm will terminate. Finite elements are used to create piecewise polynomial
approximants to the solution of partial differential equations for which no analytical
solution exists. These polynomials represent fields such as pressure, stress, and mo-
mentim. In the past, these polynomials have been linear in each parametric coordinate.
Each polynomial coefficient must be uniquely determined by a simulation, and these
coefficients are called degrees of freedom. When there are not enough degrees of free-
dom, simulations will typically fail to produce a valid approximation to the solution.
Recent work has shown that increasing the number of degrees of freedom by increas-
ing the order of the polynomial approximation (instead of increasing the number of
finite elements, each of which has its own set of coefficients) can allow some types
of simulations to produce a valid approximation with many fewer degrees of freedom
than increasing the number of finite elements alone. However, once the simulation has
determined the values of all the coefficients in a higher-order approximant, tools do
not exist for visual inspection of the solution.

This report focuses on a technique for the visual inspection of higher-order finite
element simulation results based on decomposing each finite element into simplicial
regions where existing visualization algorithms such as isosurfacing will work. The
requirements of the isosurfacing algorithm are enumerated and related to the places
where the partial derivatives of the polynomial become zero. The original isosurfacing
algorithm is then applied to each of these regions in turn.
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Visualizing Higher Order Finite
Elements: FY05 Yearly Report

1 Introduction

1.1 Motivation

Sandia’s role as a stockpile steward depends on its ability to explore nuclear weapon per-
formance numerically, rather than experimentally. This numerical simulation is most often
accomplished through finite element analysis, a technique under constant development over
the last 3 to 4 decades. Recent advances in finite element methods increase both the hierar-
chical (h) and polynomial (p) level of detail – ordegrees of freedom– during a simulation.
Finite element methods have advanced significantly since their conception several hundred
years ago. Much more recently, a class of techniques known ashp-adaptive methods have
been developed in an effort to converge to a solution more quickly than previously pos-
sible. Finite element solvers that incorporatehp-adaptivity are quickly becoming popular
since they often converge to a solution with fewer total degrees of freedom than hierar-
chical adaptivity alone. Among others, the SIERRA team is implementing higher order
polynomial finite element solvers.

Currently, there is no way to visualize the solutions of simulations with cubic or higher
order elements, which prevents analysts from exploiting using high order simulations. This
is a critical issue, and as long as it will remain unsolved, it is unlikely that higher order
finite element simulations will be of any production-level use. For instance, although tools
such asParaView andEnsight can currently render finite elements of degree 2, they do not
always do so correctly. Figure1, left, shows the same scalar field over a quadratic element’s
boundary rendered withParaView’ s standard technique (back) and after our refinement
filter has been applied (front). Figure1, right, is the same but with volume rendering
instead of surface rendering.

1.2 Context: the (nonlinear) finite element method

Here we briefly review the finite element method to develop notation used throughout the
paper. Recall that the finite element method approximates the solution,f : Ω 7→ IR, of some
differential equation as a set of piecewise functions over the problem domain,Ω ⊂ IRd.
AlthoughΩ may be any generald-dimensional domain, we’ll assume it is 3-dimensional.
The fact that we have a piecewise approximant dividesΩ into subdomainsΩe⊆ Ω, e∈
EΩ that form a closed cover ofΩ. EachΩe is itself a closed set of points with its own
approximating functionfe. Furthermore, we require that eachΩe be parameterized so that
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Figure 1. Surface and volume renderings of the same quadratic
hexahedral finite element.

the approximating functions can be written as polynomials in the parameters:

Φe(~r) = A0,0,0 +A1,0,0r +A0,1,0s+A0,0,1t +A1,1,1rst+ · · ·

These coefficients,Ai, j,k, are known asdegrees of freedom(DOFs). Each one corresponds
to a particular modal shape, and sets of modal shapes can be grouped together into nodes
by the regions of parameter-space over which they have an effect (a given corner, edge,
face, or the interior volume).

Because eachΩe is parameterized, there is also a map from parametric coordinates~r =
(r,s, t) to geometric coordinates~x = (x,y,z):

Ξe(~r) = B0,0,0 +B1,0,0r +B0,1,0s+B0,0,1t +B1,1,1rst+ · · ·

whereBi, j,k ∈ IR3. So, the approximate solution to the differential equation may be written
in terms of parametric coordinates (asΦe) or in terms of geometric coordinates:

fe(~x) = Φe◦Ξ−1
e

where we assume thatΞe is invertible for all points ofΩe, as schematically represented
in Figure 2. A global approximantf (~x can then be constructed from the piecewise el-
emental approximants. This leaves only the matter of what to do whereΩe and Ω j, j 6=e

intersect. Usually, these subdomains intersect over(d−1)-dimensional or lower regions
(2-dimensional faces, 1-dimensional edges, and “0”-dimensional vertices in our case). In
these regions,Φ is not well-defined sinceΦe andΦ j may disagree. Usually, the finite el-
ement method constrainsΦe andΦ j to be identical, however some methods such as the
discontinuous Galerkin method do not require this and subsequently have no valid approx-
imant in these regions.

For a given decomposition ofΩ, the finite element method may not converge to the correct
(or indeed, any) solution. WhenΦe andΞe are trilinear polynomials for alli, a technique
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Figure 2. The 2 maps involved in the finite element approxima-
tion of the solution.

calledh-adaptation is often used to force convergence and/or increase solution accuracy. In
this technique, some subdomainsE⊆ EΩ are replaced with a finer subdivisionE′ such thatS

e∈E Ωe =
S

e∈E′Ωe but |E′|> |E|1.

Similarly, p-adaptation is the technique of increasing the order of polynomialsΦ and/orΞ
rather than the number of finite elements.hp-adaptation is then some combination ofh- and
p-adaptation overΩ. Usually,h- andp-adaptation occur in mutually exclusive subdomains
of Ω, but this is not a strict requirement. Note that whileh-adaptation generates a finer
approximation of bothΦ and Ξ wherever it occurs,p-adaptation can selectively refine
individual fields.

In the end, the finite element method provides an approximation toΦ by solving a collection
of equations for coefficients (A andB in the examples above). Our task is then to charactize
the mapsΦ andΞ in a way that aids human understanding of the solution.

1.3 Statement of the Problem

Higher order surface rendering is probably the most used visualization technique, which
we have already addressed with a brute-force technique that scales with the size of the

1In temporal simulations, we do allow|E′| < |E| in regions whereΩ has been adapted to some time-
transient phenomenon.

9



model [2]. Arguably, the next most useful visualization tool is isocontouring. For higher
order finite element solution fields, this pertains to a branch of mathematics completely
different from that used to compute them. In fact, it involves solving a problem proposed
by D. HILBERT as an

[. . . ] investigation as to the number, form, and position of the sheets of an
algebraic surface in space2.

Obviously, we are not going to analytically solve this problem that has stymied mathe-
maticians for more than a hundred years, and still does. However, even the most basic
tools for understanding higher order simulation results require us to confront this issue,
because without it we cannot even know the range of values a field takes over an element.
Therefore, we must devise numerical approximations to this problem, and this is the goal
of this research. This has lead us to develop a method for adapting existing visualization
techniques to higher order finite element data.

In fact, HILBERT’s 16th Problem is related to typical visualizations, not only isosurfacing,
such as cutting, clipping and volume rendering, because all of these operations involve the
manipulation of an algebraic fieldΦ defined over some region of spaceR. The crux of the
problem is to characterize this mapΦ.

One way to completely characterizeΦ is to use existing techniques such as linear isosurfac-
ing, volume rendering,etc. on subregionsRi ⊂ R where the assumptions of these methods
hold. This involves the identification of the setC⊂ R of critical values ofΦ, from which
Ri may be derived, from which a new tessellation ofR may be computed. Then each of
these visualization techniques may be applied to the new tessellation. See Figure3. We
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Figure 3. Decomposing a parametric domain into regions where
linear assumptions hold.

have found several methods that exist to identify the points ofC when they are isolated,
and we have implemented one (homotopy) [8]. We also have devised [3], implemented,

2D. HILBERT’s 16th Problem, International Congress of Mathematicians, Paris, 1900
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and validated [9, 4, 7] an adaptivestreamingtessellation scheme that is well suited to the
last step. The fact that it is a streaming algorithm makes it:

1. embarrassingly parallel on clustered architectures, and

2. potentially portable to streaming FPGA/GPU-type hardware.

Therefore, what remains is the middle step of computing theRi from C, which is complex
but where methods exist. However, when some critical points are not isolated, none of the
existing critical point detection techniques work and the problem remains largely open.

The goal of this LDRD-funded research was to propose one numerical solution to this
problem. In this report, we present our approach and in illustrate it with isocontouring.

2 Isocontouring of Higher Order Elements

This section discusses how we solved the problem of higher order elements isocontour-
ing. We present a detailed treatment of how critical points may be used to partition a finite
element into regions where linear isosurface extraction assumptions are valid. It is very
important to be aware that just because we are partitioningΩe into regions where the as-
sumptions of a linear algorithm are valid, that doesnotmean that we intend to approximate
the higher order interpolant with a linear interpolant in these regions! In fact, our goal once
we have identified the partition is to use the higher order interpolant directly. We will show
how important this distinction is for isosurfacing later in the paper.

2.1 Partitioning for Isocontouring

Here are the conditions that linear tetrahedral isosurfacing algorithms require:

(C1′) each tetrahedron edge intersects an isocontour of a particular value at most once,

(C2′) no isocontour intersects a tetrahedron face without intersecting at least two edges of
the face,

(C3′) no isocontour is completely contained within a single tetrahedron, and

(C4′) the map from parametric to geometric coordinates must be bijective.

In order to adapt this algorithm to handle higher order cells of any shape and polynomial
order, we will decomposeΩe into a simplicial complex, each tetrahedron of which must
satisfy the criteria above. We now translate these criteria into more precise requirements
on Φe:

11



(C1) Φe has no interior extrema along any tetrahedral edge. We may specify an edge as
a linear relationship among parametric coordinates so that, if the dependency is in
terms ofr, this constraint may be writteng′(r) = (∂Φe

∂r +a∂Φe
∂s +b∂Φe

∂t )(r,s(r),t(r)) 6= 0
over some interval]r0, r1[⊂ IR, wherea andb are real constants. Note that one can
haveg′(r) = 0 (i.e., an extrema on the edge) even though∇Φe(r,s(r), t(r)) 6= 0, which
means that a critical point ofg is not necessarily a critical point ofΦe – although the
converse is true. Also note that(C1) is slightly stronger than (C1′), as the condition
g′(r) 6= 0 is sufficientto avoiding multiple isocontour-edge intersections – but not
necessary: just think ofr 7→ r3 in 0.

(C2) Φe has no interior extrema over any tetrahedral face. We may specify a face as a lin-
ear relationship among parametric coordinates so that this constraint may be written,
if the dependency is that oft in terms ofr ands, (∂Φe

∂r +a∂Φe
∂t , ∂Φe

∂r +b∂Φe
∂t )(r,s,t(r,s)) 6= 0

over some open domainUi ⊂ IR2, wherea andb are real constants. Once again, this
expression can vanish (i.e., both components are 0) even at a point where∇Φe does
not. Also, (C2) is slightly stronger than (C2′), because of saddle points (not to men-
tion degenerate critical points),

(C3) Note that for a component of an isocontour to be completely contained in some tetra-
hedron, a critical point of the differentiableΦe must exist somewhere in the element.
Thus, we must insure that all extrema ofΦe must occur at vertices of the simplicial
decomposition ofΩe. Indeed, (C3) and (C3′) are equivalent.

(C4) We may also state (C4′) as∀~x∈ Ξe(Ωe), ∃!~r ∈Ωe such thatΞe(~r) =~x.

So, for isocontouring, all of the differences between the linear and higher order implemen-
tation can be attributed to critical points. In fact, it is straightforward to see that similar
requirements arise in the case of surface rendering.

As we noted then, higher order finite elements that have non-simplicial domains (such as
hexahedra, pyramids, etc.) will have to be decomposed into tetrahedraT . However, these
tetrahedra must additionally meet the requirements (C1) to (C4). We can start by inserting
corner pointsCe and any points where∇Φe = 0 into Pe. Although anyT (Pe) will clearly
meet (C3), the restriction ofΦe to the edges and faces ofT must be considered if we are
to satisfy (C1) and (C2). This is because a finite element’s domainΩe is a closed set and
solving∇Φe = 0 only provides critical points on the interior ofΩe, which is an open set.
In order to find maxima and minima on∂Ωe, we must find critical points on the restriction
of Φe to each bounding surface. But again, these critical points will only be for the open
interior of each surface, so the restriction ofΦe to each curve bounding each surface must
be considered. These critical points are only for the open interior of each curve, so the
values at curve endpoints – the topological corners ofΩe – must be considered.

So, let’s examine howT might be constructed to accomodate (C1) and (C2); although it is
possible to perform a series of edge flips on the tessellation in Figure4 so that the connec-
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tivity is correct, it is unclear whether this holds in general – especially in three dimensions3.
Rather than attempting to identify a set of “problem” edges and prove that they may always
be flipped into a satisfactory configuration, we simply introduce a new vertex along each
internal edge that has a critical point on the restriction ofΦ to its domain. The vertex is
then connected to each node in its star. Any new edges created by this operation must be
examined for critical points ofΦ restricted to their domain. This makes the algorithm re-
cursive, but it must terminate when critical points are isolated.Although the introduction of
these additional vertices partitions higher order elements into a larger number of regions,
there is no constraint on the initial tessellation of the corner and critical points – which
significantly reduces the amount of work.

In three dimensions, the algorithm must be modified because the introduction of a new ver-
tex results in the creation of triangles as well as edges. Now when a new vertex is inserted,
any triangles whose planes have not been previously searched for critical points must be
inspected (in addition to new edges). We are spared some work since some triangles will
already have been searched.

When a partition of a cell meets all the criteria of (C1) through (C4), we say that the
partition isΦ-compatible.

2.2 Isocontouring Implementation

Although2.1 presents a good algorithm, it is not necessarily an efficient implementation.
Particularly, it makes no guarantees that shared element boundaries will be tessellated iden-
tically by all finite elements on that boundary. This prohibits a streaming implementation.
It also fails to address the question of how the decomposition of each element should be

3Note that random triangulations may always be converted to Voronoi triangulations by flips in 2-D, but
not in 3-D, which is one reason we are skeptical of the flipping approach.
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stored; if each element is responsible for storing its own decomposition, we may either end
up duplicating work computing shared boundaries or maintaining large amounts of state
information as boundary constraints are propagated through the mesh.

In order to avoid these problems, we break the algorithm into several passes.

PARTITION-MESH(M,κ)
1 C← DOF-CRITICALITIES(M,κ)
2 T0← TRIANGULATE-BOUNDARIES(M,C)
3 (T1,S)← TETRAHEDRALIZE-INTERIOR(M,T0,C)
4 CORRECT-TOPOLOGY(M,κ,S,T1)
5 return T1

The first step in the process is the location of critical points interior to each finite ele-
ment and each finite element’s open boundaries. Because finding critical points is a time-
consuming process, we do not wish to process the same shared edge or face twice. This
extra work can be avoided by storing critical points indexed by the DOF with which they
are associated – critical points on a face are stored with the index used to retrieve the coef-
ficients for that face’s degrees of freedom, and likewise for edges.

The technicalities involved with finding these critical points arise from the fact that

Φe : R⊂ IR3 −→ IR
(r,s, t)T 7→ Φe(r,s, t).

is defined over a closed domainR, which involves looking for critical in both the inte-
rior of R and on its closure, that can itself be decomposed in open faces, open edges,
and corners. Now, a planar face that passes through the point(cx,cy,cz) and has basis
{(ax,ay,az),(bx,by,bz)} can be parameterized with two variables,u andv:

η : U ⊂ IR2 −→ IR3(
u
v

)
7→

 axu+bxv+cx

ayu+byv+cy

azu+bzv+cz

 ,

from where we find the restriction ofΦe to the aforementioned plane:

Ge = Φe◦η : U −→ IR

Now, consider an arbitrary point(r0,s0, t0) in IR3. We then have dΦe(r0,s0, t0)∈L
(
IR3, IR

)
,

with

dΦe(r0,s0, t0) = ∇Φe(r0,s0, t0) · (dr,ds,dt),

where· denotes the usual inner product of IR3. On the other hand, at any arbitray point

14



(u0,v0) in IR2, dη(u0,v0) ∈ L
(
IR2, IR3

)
with

dη(u0,v0) =


∂η0
∂u

∂η0
∂v

∂η1
∂u

∂η1
∂v

∂η2
∂u

∂η2
∂v


∣∣∣∣∣∣∣
(u0,v0)

(
du
dv

)

=

 ax bx

ay by

az bz

(
du
dv

)

and therefore, dGe(u0,v0) ∈ L
(
IR2, IR

)
with

dGe(u0,v0) = dΦe(η(u0,v0))◦dη(u0,v0)

=
(

∂Φe

∂r
∂Φe

∂s
∂Φe

∂t

)∣∣∣∣
η(u0,v0)

 ax bx

ay by

az bz

(
du
dv

)

Finally, critical points of the face restriction occur when dGe(u0,v0) = 0, which may also
be expressed as

ax
∂Φe

∂r
(η(u0,v0))+ay

∂Φe

∂s
(η(u0,v0))+az

∂Φe

∂t
(η(u0,v0)) = 0

bx
∂Φe

∂r
(η(u0,v0))+by

∂Φe

∂s
(η(u0,v0))+bz

∂Φe

∂t
(η(u0,v0)) = 0.

Regarding the critical points of edge restrictions, similar calculations must be done, that
will be left to the reader as an exercise.

DOF-CRITICALITIES(M)
1 for e← |M|
2 do Find c. p. ofΦe in Ωe

3 Store c.p. indexed by volume DOF node.
4 for i ∈ BDY2(Ωe)
5 do if ∇Φe| f 2

i
= 0 not marked,

6 then Find c.p. ofΦe| f 2
i

7 Store c.p. ofΦe| f 2
i

in Ci

8 Mark Φe| f 2
i

as done

9 for i ∈ BDY1(Ωe)
10 do if ∇Φe| f 1

i
= 0 not marked,

11 then Find c.p. ofΦe| f 1
i

12 Store c.p. ofΦe| f 1
i

in Ci

13 MarkΦe| f 1
i

as done
14 return C
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Once the critical points have been located, we triangulate two-dimensional boundaries of
all cells. This ensures that any volumetric cells that reference a particular face use the same
triangulation – otherwise our model would have cracks along element boundaries.

TRIANGULATE-BOUNDARIES(M,C)
1 T0← /0
2 for i← each 2-boundary of every finite element
3 do P← corner points of faceiS

isolated c.p. of all bounding edges of facefi
4 if |Ci |> 0
5 then c←Ci,0

6 else c← FACE-CENTER(BDY2
i (Ωe))

7 T← STAR2(c,P)
8 for c∈ {Ci \Ci,0}
9 do Find t ∈ T s. t. c∈ t

10 Removet from T
11 Subdividet into 2 or 3 trianglestk
12 Inserttk into T and recursively call TRIANGULATE-BOUNDARIES

13 InsertT into T0

14 return T0

This algorithm is justified by the fact that

Proposition 2.1. If, for all e in M, Φe does not have nonisolated critical points overΩe, nor
does any of its restrictions to the faces of e, then AlgorithmTRIANGULATE-BOUNDARIES

terminates.

Proof. To establish this result, it is sufficient to make sure the algorithm terminates, start-
ing from any arbitray face of an arbitray element inM. So, let fi be one of the faces of
an arbitrarye∈M, and we then shall prove that TRIANGULATE-BOUNDARIES({ fi},C| fi)
terminates.

First, remark that if the restrictionΦe| fi j of Φe to one edgefi j of fi has a nonisolated critical
point, then this means that the derivative ofΦe| fi j vanishes along a nonempty open segment
of fi j , and therefore has an infinity of zeros. Because this derivative is itself a univariate
polynomial function, it can thus only be zero everywhere, and thusΦe| fi j is constant along
the edge. Therefore, the only case when nonisolated critical points along a bounding edge
of fi arises is when the interpolant is constant along that edge, and therefore no other points
than its endpoints are contained inP. P is indeed a finite set, as polynomials can only have
a finite number of isolated critical points.

Now assume the restrictionΦe| fi of Φe to the interior offi hasn∈ IN∗ critical points. The
innermost loop of Algorithm TRIANGULATE-BOUNDARIES will insert thesen points, and
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yield a triangulation offi in N ∈ IN∗ trianglesti,k, such that


N[

k=1

◦
ti,k=

◦
fi

(∀ 1≤ k,k′ ≤ N) k 6= k′ ⇐⇒
◦

ti,k ∩
◦

ti,k′= /0

where all the points ofC are vertices of some ofti,k (
◦
p denotes the interior of the polgyon

p, in the sense of the natural topology induced onp by embedding it in IR2). Therefore,
none of theti,k has an internal critical point (otherwise this point would belong toC, which
is impossible because all points ofC are vertices of some ofti,k).

However, the restriction ofΦe to some edges of this triangulation offi may have critical
points4. Denoteη such an edge. If the restriction ofΦ to η has any nonisolated critical
point, then the same argument as above holds and thus the corresponding edges do not
need to be further refined. On the contrary, if such an edge critical point is isolated (in this
case, the edge must be internal tofi , as all isolated critical points along the edges offi have
been inserted priorly), then Algorithm TRIANGULATE-BOUNDARIES recursively proceeds
on η. However, the process terminates because all face critical points are supposed to be
isolated, according to the hypothesis. Therefore, for each critical pointpi of the restriction
of Φe to fi , there exists a neighborhoodVi within which all directional derivatives ofΦe are
nonzero and thus, there exists a finite number of triangle subdivisions after which no edge
critical points are left (because having such a critical point implies having one directional
derivative equal to zero).

An initial tetrahedralization of the interior is performed. When the finite element is starred
into a set of tetrahedra, we know that the triangular base of each tetrahedron and its 3
bounding edges will not have any critical points since those have already been identified and
inserted into the triangulation of the two-dimensional boundary of the element. However,
the remaining 3 faces and 3 edges must be marked becauseΦe restricted to their domain
may contain critical points. This is accomplished by MARK-TETRAHEDRON, which sets
a bit code for each edge and face not on the base of the given tetrahedron (which must be
properly oriented when passed to the subroutine).

4In other words, the subdivision offi cannot create new face critical points, but it can create new edge
critical points.
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TETRAHEDRALIZE-INTERIOR(M,T0)
1 S← /0
2 T1← /0
3 for e← |M|
4 do Let T ⊆ T1 be all triangles on BDY2(Ωe)
5 if |Ce|> 0
6 then c←Ce,0

7 else c← CELL-CENTER(Ωe)
8 V← STAR3(c,T)
9 for t←V

10 do if MARK-TETRAHEDRON(t)
11 then Pusht ontoS
12 for c∈ {Ce\Ce,0}
13 do Find t ∈V s. t. c∈ t
14 Removet from V andS
15 U ← STAR3(c, t)
16 for t ′←U
17 do if MARK-TETRAHEDRON(t ′)
18 then Pusht ′ ontoS
19 Insertt ′ into V
20 InsertV into T1

21 Return(T1,S)

Now that we have an initial tessellation, we must search for critical points along the marked
edges and triangles. Where these are found, they are inserted into the partition so that con-
ditions (C1) and (C2) will not be violated. Note that CORRECT-TOPOLOGYwill terminate
when all critical points are isolated, but not when non-isolated critical points exist.
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CORRECT-TOPOLOGY(M,S,T1)
1 while Snot empty
2 do Popt from S
3 C← /0
4 for e← marked edges oft
5 do Insert c.p. ofe into C
6 for f ← marked faces oft
7 do Insert c.p. off into C
8 for c←C
9 do Find t ∈ T1 s. t. c∈ t

10 Removet from T1 andS
11 U ← STAR3(c, t)
12 for t ′←U
13 do if MARK-TETRAHEDRON(t ′)
14 then Pusht ′ ontoS
15 Insertt ′ into T1

The algorithms we have presented indicate that we must find critical points on arbitrary
line segments and triangular faces in the domain of an element. Most polynomial system
solvers require a power-basis representation of a system to be solved and that is not usually
how finite elements are represented. Given that we wish to perform this change of basis as
infrequently as possible, it behooves us to find a way to derive the restriction ofΦe to a line
or face from the full representation ofΦe.

3 Feedback and Implementation Issues

As this research has progressed, we have discussed it with various groups at Sandia and
tried to incorporate their feedback into our code. This section covers that feedback and
the implementation issues affected. The feedback falls into two broad categories: that
dealing with the polynomial basis functions and their numerical stability and solution, and
that dealing with the ability of the mesh representation to handle different types of solvers
(particularly, both those that share interpolant coefficients to achieve boundary continuity
and those that do not, such as discontinuous Galerkin techniques).

3.1 Polynomial Interpolants

Working with higher order finite elements involves dealing with polynomial interpolants.
So far, due to the time constraints of this research, we have only focused on tensor prod-
uct Lagrange interpolants as they are the most commonly used elements in codes now in
production at Sandia. Efficiently handling such interpolants involves limiting memory re-
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quirements (so that most of the useful information can be retained in the cache memory) as
well as being able to quickly evaluate them at any given point of the interpolation domain.
In addition, as we need to find critical points, we also need to efficiently compute the partial
derivatives of these interpolants. In this section, we explain how we addressed this problem
by using algebraic techniques that allow to improve memory (and in particular cache) re-
quirements, thus making our implementation faster. This involves a few theoretical results,
that we are now describing. In all that follows,N will denote a natural number strictly
greater than 1.

3.1.1 Definition and change of basis

The Lagrange interpolants associated to the given real numbersξ0 < · · ·< ξN are the degree
N polynomials of IR[X] defined as follows:

(∀i ∈ J0,NK) LN
i (X) =

N

∏
j=0
j 6=i

(X−ξ j) (3.1)

and their normalized versions are thus obtainedvia:

(∀i ∈ J0,NK) `N
i (X) =

LN
i (X)

LN
i (ξi)

=
N

∏
j=0
j 6=i

X−ξ j

ξi−ξ j
; (3.2)

these take the value 1 at exactly one of theξi , and vanish at all others. In our case, we use
a uniform distribution of the Lagrange nodes over the parametric domain[−1,1], and thus
eachξi is simply 2i

N −1. Now, the factorized form (3.1) is not well-suited to the explicit
calculation of the derivatives of these polynomials. Instead, we wish to express them in the
power basis

{
Xn

}
n∈J0,NK, and thus explicit the coefficient such that

(∀i ∈ J0,NK) LN
i (X) =

N

∑
n=0

an(i)Xn. (3.3)

In fact, these coefficient can simply be retrieved using the elementary symmetric polynomi-
als. For the sake of convenience, we introduce the following notation: for alli ∈ J0,NK, ΞN

i
denotes theN-tupled whosej th component isξ j if j < i. ξ j+1 otherwise. In other words,
it is the tupled formed by taking allξ j ’s, with the exception ofξi , and keeping them in the
same order. Now, with this notation, it is a classical result that

(∀(n, i) ∈ J0,NK2) an(i) = (−1)N−nSN
N−n(Ξ

N
i ), (3.4)
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where theSN
n are the degreeN elementary polynomials of IR[X1, . . . ,XN]. As a reminder,

here are a few specific cases:

SN
1 (X1, . . . ,XN) = ∑

1≤i≤N

Xi (3.5)

SN
2 (X1, . . . ,XN) = ∑

1≤i< j≤N

XiXj (3.6)

... (3.7)

SN
N(X1, . . . ,XN) = ∏

1≤i≤N

Xi , (3.8)

or, in short form,

(∀n∈ J1,NK) SN
n (X1, . . . ,XN) = ∑

1≤i1<···<in≤N

n

∏
k=1

Xik. (3.9)

We also setSN
0 (X1, . . . ,XN) = 1 to obtain (3.3) in its most generic form. To avoid the

computing the symmetric polynomials and their derivatives at any point, it is therefore
sufficient to precompute all necessaryan(i), and then use (3.3). If only one polynomial
order is present within the entire mesh, then only(N+1)2 coefficients need to be computed
and statically stored, but in reality several polynomial orders are likely to be present in
any real higher order finite element simulation; in fact, for a tensor-product 2-D or 3-D
element, each coordinate’s corresponding polynomial may very well have a different order.
Therefore, it is interesting to notice that, thanks to the results that follows, we can divide
the required storage size by 2.

Proposition 3.1. Using the definitions above, if theξi uniformly subdivide an interval that
is symmetric about0, then

(∀(n, i) ∈ J0,NK2) an(N− i) = (−1)N−nan(i). (3.10)

Proof. If n= N, then the result is evident. Otherwise, we notice that the hypothesis implies,
for all i in J0,NK, ξN−i =−ξi . Therefore,

(∀(n, i) ∈ J0,N−1K× J0,NK) ΞN
N−i =−σ(ΞN

i ), (3.11)

whereσ ∈ SN is the permutation overN−tuples that transposes eachith entry with the
(N− i)th. On the other hand, (3.9) yields

(∀n∈ J1,NK) SN
n (−(X1, . . . ,XN)) = ∑

1≤i1<···<in≤N

n

∏
k=1

−Xik (3.12)

= ∑
1≤i1<···<in≤N

(−1)n
n

∏
k=1

Xik (3.13)

= (−1)nSN
n (X1, . . . ,XN). (3.14)

21



Therefore, for any(n, i) in J0,N−1K× J0,NK, we have,

SN
N−n(Ξ

N
N−i) = SN

N−n(−σ(ΞN
i )) = (−1)N−nSN

N−n(σ(ΞN
i )) = (−1)N−nSN

N−n(Ξ
N
i ), (3.15)

becauseSN
N−n is indeed a symmetric polynomial, and thus is invariant under permutation

of its variables. The conclusion then gently arises, by definition ofan.

3.1.2 Normalization factors

GivenN ∈ IN \{0,1}, define the following normalization coefficients:

(∀i ∈ J0,NK) NN(i) =
1

LN
i (ξi)

=
N

∏
j=0
j 6=i

1
ξi−ξ j

. (3.16)

Using the fact that we use Lagrange interpolants over the parametric domain[−1,1], we
then have

(∀i ∈ J0,NK)
1

NN(i)
=

( 2
N

)N i

∏
k=i−N

k6=0

k =
( 2

N

)N
(−1)N−i(N− i)! i!. (3.17)

from where it immediately follows that

(∀i ∈ J0,NK) NN(N− i) = (−1)NNN(i). (3.18)

A practical consequence of (3.18) is that the storage space for the Lagrange normalization
coefficients can be divided by either 2, whenN is odd, or 2− 2

N+2, whenN is even.

3.1.3 Issues

One of the failings of homotopy techniques is their requirement of input polynomials in the
form of a power basis (also known as a monomial basis). The power basis can be numeri-
cally unstable because coefficients tend to vary by many orders of magnitude. Conversion
from the Lagrange basis can leave these coefficients with very few significant digits. Also,
when a polynomial is evaluated, terms with coefficients of opposite sign often nearly can-
cel each other out, leaving small quantities with very few significant digits of precision.
The efficient computation of partial derivatives still requires a power basis representation,
but other problems with homotopy continuation methods have led us to experiment with
polynomial solvers that use resultants for univariate and bivariate polynomials [1]. These
solvers are very fast but have trouble detecting repeated roots.
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3.2 Efficient DOF storage and handling

As previously mentioned, finite element developers at Sandia have expressed interest in a
visualization tool that is flexible enough to handle results from a wide variety of solvers;
requests included

• a mesh representation that can accomodate discontinuous as well as continuous so-
lutions,

• the ability to change the polynomial order of fields independently of each other, and

• the ability to change the polynomial order of individual faces and edges in the mesh
without changing the cell as a whole.

These goals are accomplished by segregating coefficients of the polynomial basis functions
by the regions of a finite element where the basis function vanishes. Each coefficient is
called a DOF mode since it corresponds to a basis function mode shape. Groups of coeffi-
cients are called DOF nodes and are the basic unit of storage. DOF nodes may be shared
between finite elements in the same way that corner points are typically shared. In this sec-
tion, we discuss the difficulties of efficiently storing and fetching the degrees of freedom of
higher order elements, and a solution using algebraic techniques. We focus on the case of
continuous solutions since it is trivial to not share coefficients by simply storing them in a
DOF node that is not referenced by more than one element.

3.2.1 Node Permutations

Each finite element cell stores a 32-bit integer containing a specification of the coordinate
transform to move the shape functions from their storage order into the cell’s order. Con-
sider the example shown in Figure5, where two cells, cell 0 and cell 1, share a face and
thus refer to the same corresponding DOF node. This face is the 3rd in cell 0, while it the
first in cell 1. Let’s say that the face node has 3 DOF:{d,e, f }. Cell 1 uses these for
interpolating a fieldF like so:

F = . . .+dN2,1,2 + f N3,1,2−eN2,1,3 + . . . (3.19)

with N2,1,2 = 1
2(1− s)φ2(r)φ2(t), N3,1,2 = 1

2(1− s)φ3(r)φ2(t), and so on. The shape func-
tions are linear ins, indicating that the DOF correspond to a face mode in cell 1’sr−t plane
(the figure showss= −1). Note thate and f have been swapped ande has been negated.
This implies that the storage order of the DOF is in reference to a different coordinate
system than the cell.

We can generate a linear, 2×2, orthonormal transformation matrix to change from the DOF
storage order into the cell’s coordinates:(

r1

t1

)
=

(
0 −1
1 0

)(
rstore

tstore

)
(3.20)
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r1

r0

s0

s1

t0

t1

Cell 0

Cell 1

Figure 5. An example of the use of DOF node permutations
stored with each cell.

whererstore, tstore are the storage coordinates andr1, r1 are the cell coordinates. Think of
this transformation as a change of basis from one coordinate system (storage) to another
(cell 1).

N2,1,2 will be unchanged by the transformation becauseφn(x) are symmetric about the
origin for evenn (i.e., n = 2i). Shape functions with oddn (i.e., n = 2i + 1) are sym-
metric aboutx = y, so φ2i+1(−x) = −φ2i+1(x). This property can be used to show that
eN3,1,2(rstore) = −eN2,1,3(t1). Furthermore, given the transform, we can simply adjust the
order and signs of the storage-order shape function coefficients before multiplying by cell-
order shape functions to interpolate a value forF . This is a handy property because we can
cache permuted coefficients from all DOF nodes for the entire cell and avoid the cost of
applying transformations for each face and edge node each timeF is evaluated.

In order to construct cell 2, we need to calculate the transformation between the storage co-
ordinate frame of the shared face’s DOF node and cell 2’s coordinate frame. Unfortunately,
there is no information on the coordinate frame stored with the DOF node – it is implicit.
We’re not lost, though, because we have a transformation from the storage coordinates to
cell 1 and we can build a transformation from cell 1 to cell2.

The coordinate transform in the example above is one of 8 possible transforms for a quadri-
lateral face DOF node: there are 2 transforms associated with each corner vertex of the
face. A hexahedron has 6 quadrilateral faces (3 bits each) and 12 edges (1 bit each), which
means that all the permutations for a hexahedron (of any order) will fit into a 32-bit integer.
Triangular faces have 6 possible permutations (still 3 bits), so wedge cells need 24 bits,
pyramidal cells need 23 bits, tetrahedra need 18 bits. Octahedra need 36 bits, which is a
bummer, but no one really uses those anyway, right? Each of the unique transformations
for a hexahedron is assigned a 3 bit code. This code indicates which parametric coordinates
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to swap and negate. The codes are illustrated in Figure6. These codes can also be concate-
nated very easily. Thus, using the example above, we can assign a code to faceA on cell 2
relative to faceC on cell 1. Then, knowing the code for faceC on cell 1, we can modify the
code for faceA in cell 2 such that it transforms the stored DOF node coefficients directly,
again by appropriate swaps and negations.

Each cell has a coordinate frame that is specified by the ordering of the corner vertices in
the connectivity array. All of the permutation bits stored with the cell are used to convert
from each DOF node’s storage frame into thatcell’s coordinate system. It is important to
realize that given a DOF node for faceC on cell 1, the permutation bits donot specify a
transformation from the storage frame into a coordinate frame associated with faceC, but
rather cell 1’s coordinate frame.All of the shape function coefficients are transformed from
an arbitrary storage coordinate frame into the cell’s coordinate frame.Again, for hexahe-
dral elements, the transformation amounts to swapping and negating selected coefficients.

3.2.2 Solution using the dihedral groupD4

The way we implemented the face DOF permutations isvia the use of the dihedral group
acting on a 4-element set,D4. This provides a convenient abstract representation of the
problem, and subsequently a straightforward way to implement these Lagrange-tensor face
DOFs permutations. In fact, we first see these DOFs as 2-dimensional arrays,i.e., matrices,
and usingD4 we immediately obtain the index entries of any particular configuration shown
in Figure6 from the default configuration and then permutation bitcode. Finally, these 2-
dimensional (matrix) indices are transformed into 1-dimensional (vector) indices, because
memory storage is ultimately handled by vectors.

For any arbitrary(d,m,n) ∈ IN3, we denote the DOF modes of a face as follows:

A =

 an,0 · · · an,m
...

...
...

a0,0 · · · a0,m

 ∈Mn+1,m+1(IRd),

where eachai, j ∈ IRd represents the DOF modes of a Lagrange face interpolant (thus with
order(n+2)× (m+2). Recall that the dihedral groupD4 is the group of permutations of
4 elements that is isomorphic the the group of isometries of the cube,i.e.,

D4 =
{
(),(0123),(0321),(02)(13),(01)(23),(03)(12),(02),(13)

}
.

Evidently, we have().A= A, and the images ofA by the other permutations ofD4 are given
in the following paragraphs.

25



swap, −r −r, −s swap, −s

s

r

2

3

1

0

1

2

3

0

3

2

1
r

s

identity

s

r

−rswap, −r, −s−sswap

r

s

0

3

2

10

s

r

3

0

1

2

s

r

s

r

0

1

2

3

s

r

r

s

0

1

2

3 2

3

1

0

0

1

2

3

001 011 101 111

Odd Permutations

010 100 110

Even Permutations

000

Figure 6. Codes for unique face node transformations for hexa-
hedra.

Figure 7. A change of basis can be used to find the DOF node
permutation for a new cell given an existing cell sharing that node.
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Permuting with (0123) DenotingB = (0123).A, we haveB∈Mm+1,n+1(IRd), and

(0123).A =

 bm,0 · · · bm,n
...

. ..
...

b0,0 · · · b0,n

 =

 a0,0 · · · an,0
...

...
...

a0,m · · · an,m


whence (

∀(i, j) ∈ J0,mK× J0,nK
) (

(0123).A
)

i, j =
(
A
)

j,m−i

Permuting with (0321) DenotingB = (0321).A, we haveB∈Mm+1,n+1(IRd), and

(0321).A =

 bm,0 · · · bm,n
...

...
...

b0,0 · · · b0,n

 =

 an,m · · · a0,m
...

.. .
...

an,0 · · · a0,0


whence (

∀(i, j) ∈ J0,mK× J0,nK
) (

(0321).A
)

i, j =
(
A
)

n− j,i

Permuting with (02)(13) DenotingB = (02)(13).A, we haveB∈Mn+1,m+1(IRd), and

(02)(13).A =

 bn,0 · · · bn,m
...

...
...

b0,0 · · · b0,m

 =

 a0,m · · · a0,m
...

...
...

an,m · · · an,0


whence (

∀(i, j) ∈ J0,nK× J0,mK
) (

(02)(13).A
)

i, j =
(
A
)

n−i,m− j

Permuting with (01)(23) DenotingB = (01)(23).A, we haveB∈Mn+1,m+1(IRd), and

(01)(23).A =

 bn,0 · · · bn,m
...

. ..
...

b0,0 · · · b0,m

 =

 an,m · · · an,0
...

...
...

a0,m · · · a0,0


whence (

∀(i, j) ∈ J0,nK× J0,mK
) (

(01)(23).A
)

i, j =
(
A
)

i,m− j

Permuting with (03)(12) DenotingB = (03)(12).A, we haveB∈Mn+1,m+1(IRd), and

(03)(12).A =

 bn,0 · · · bn,m
...

...
...

b0,0 · · · b0,m

 =

 a0,0 · · · a0,m
...

...
...

an,0 · · · an,m


whence (

∀(i, j) ∈ J0,nK× J0,mK
) (

(03)(12).A
)

i, j =
(
A
)

n−i, j
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Permuting with (02) DenotingB = (02).A, we haveB∈Mm+1,n+1(IRd), and

(02).A =

 bm,0 · · · bm,n
...

...
...

b0,0 · · · b0,n

 =

 a0,m · · · an,m
...

...
...

a0,0 · · · an,0


whence (

∀(i, j) ∈ J0,mK× J0,nK
) (

(02).A
)

i, j =
(
A
)

j,i

Permuting with (13) DenotingB = (13).A, we haveB∈Mm+1,n+1(IRd), and

(13).A =

 bm,0 · · · bm,n
...

...
...

b0,0 · · · b0,n

 =

 an,0 · · · a0,0
...

...
...

an,m · · · a0,m


whence (

∀(i, j) ∈ J0,mK× J0,nK
) (

(13).A
)

i, j =
(
A
)

n− j,m−i

3.2.3 Implementation

In memory, the entries ofA and its images are not stored as matrices, but as linear arrays.
Therefore, the explicit formulas are as follows:(
∀(i, j,k) ∈ J0,mK× J0,nK× J0,d−1K

)(
(0123).A

)
[(i× (n+1)+ j)×d+k] = A[( j× (m+1)+m− i)×d+k]

(
∀(i, j,k) ∈ J0,mK× J0,nK× J0,d−1K

)(
(0321).A

)
[(i× (n+1)+ j)×d+k] = A[((n− j)× (m+1)+ i)×d+k]

(
∀(i, j,k) ∈ J0,nK× J0,mK× J0,d−1K

)(
(02)(13).A

)
[(i× (m+1)+ j)×d+k] = A[((n− i)× (m+1)+m− j)×d+k]

(
∀(i, j,k) ∈ J0,nK× J0,mK× J0,d−1K

)(
(01)(23).A

)
[(i× (m+1)+ j)×d+k] = A[(i× (m+1)+m− j)×d+k]
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(
∀(i, j,k) ∈ J0,nK× J0,mK× J0,d−1K

)(
(03)(12).A

)
[(i× (m+1)+ j)×d+k] = A[((n− i)× (m+1)+ j)×d+k]

(
∀(i, j,k) ∈ J0,mK× J0,nK× J0,d−1K

)(
(02).A

)
[(i× (n+1)+ j)×d+k] = A[( j× (m+1)+ i)×d+k]

(
∀(i, j,k) ∈ J0,mK× J0,nK× J0,d−1K

)(
(13).A

)
[(i× (n+1)+ j)×d+k] = A[((n− j)× (m+1)+m− i)×d+k]

4 Conclusions

Since this proposal was funded for only 6 months, this annual report marks the end of the
project. Our original goals were to

• correctly insert isolated critical points into a tessellation of finite elements that could
be used for isosurfacing; and to

• study the implementation of higher order isosurfacing to detect non-isolated critical
points.

Originally, we had hoped that the critical points of a scalar field over an open domain, along
with critical points of the field’s restriction to the domain’s closure, result in a minimal but
sufficient sampling of the finite element for analysis. However, we have had to modify this
slightly to accomodate the fact that the restriction of the field to the closure of each 0-, 1-,
and 2-simplex in the decomposition of the finite element must be recursively searched for
critical points, not just the restriction to the boundaries of the finite element.

The algorithm and proof we present here accomplishes the tasks above with two exceptions:

• Non-isolated critical points whose locus is a curve or curved sheet in space will cause
algorithm to fail to terminate. However, a simple limit on the number of iterations
will yield a piecewise approximation of the locus of critical points. We do not see
this as a problem.
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• Non-isolated critical points that do not intersect a face or edge of any simplex in
the decomposition of a finite element may not be detected. This will always be
difficult because numerical methods frequently rely on the existence of a gradient to
converge to a root; when the gradient does not exist in 1 or 2 directions, path-tracing
root-finders have trouble maintaining a reasonable step size and other methods, such
as the resultant techniques, must deal with singular matrices.

The implementation of these algorithms is nearly complete and our final report will include
results.

In addition to the proposed work, we have studied a number of polynomial system solvers in
an attempt to develop a more robust implementation. For univariate polynomials, the Lin-
Bairstow solver is adequate – numerical accuracy is a concern because coefficient accuracy
drops as roots are divided out of the result. For bivariate polynomials, the Day-Romero
approach using Sylvester resultants may yield acceptable results, but is not sufficiently
robust at locating repeated roots for use as a univariate solver. We have still not identified
any technique that is uniformly robust for the three-dimensional case.

Apart from these minor issues, this paper has presented the algorithm and proof that were
the main focus of this research and we have seen interest both at Sandia and outside in
isocontouring higher-order finite elements. A conference paper on the implementation
framework has been accepted and we have been invited to expand it into a journal arti-
cle which will include some of the results of this research. The framework we present
is flexible enough to represent finite element solutions from a large variety of simulation
codes in both production and development at Sandia and we hope to continue developing
it to include support for more polynomial bases and element shapes.

References

[1] D. Day and L. Romero. Roots of polynomials expressed in terms of orthogonal poly-
nomials.SINUM, 43, 2005. Accepted/in Print.

[2] R. Khardekar and D. Thompson. Rendering higher order finite element surfaces
in hardware. InProc. of Graphite 2003, Melbourne, Australia, February 2003.
ACM/SIGGRAPH.
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